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Investigations of transmission of binary infor-
mation usually consider a channel model in which
failures of the type 0 — 1 and 1 — 0 (which we will
call reversals) are admitted. In the present paper
(as in [1]) we investigate a channel model in which
it is also possible to have failures of the form 0 — A,
1 — A, which are called deletions, and failures of
the form A —~ 0, A — 1, which are called insertions
(here A is the empty word). For such channels, by
analogy to the combinatorial problem of construct-
ing optimal codes capable of correcting s reversals,
we will consider the problem of constructing opti-
mal codes capable of correcting deletions, inser-
tions, and reversals.

1. Codes Capable of Correcting

Deletions and Insertions

By a binary word we will mean a word in the
alphabet {0, 1}. By a code we will mean an arbi-
trary set of binary words that has fixed length.!
We will say that a code K cancorrect s dele-
tions (s insertions) if any binary word can
be obtained from no more than one word in K by s
or fewer deletions (insertions). This last property
guarantees the possibility of unique determination
of the initial code word from a word obtained as the
result of some number i(i = 0) of deletions and
some number j (j = 0) of insertions if i+j =s. The
following assertion shows that all of the codes de-
fined above are equivalent.

Lemma 1., Any code that can correct s de-
letions (like any code that can correct s insertions)
can correct s deletions and insertions.

Proof (by contradiction). Assume that the
same word z is obtained from a word x of length n
by i; deletions and j; insertions, where ij+j; =s,
and from a word y of length n by i, deletions and j,
insertions, where iy +j, = s. If the symbols that
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were inserted (deleted) from at least one of.the
words x or y to obtain z are deleted from (inserted
into) the word z, then, as we can easily see, we ob-
tain a word that can be obtained from both x and y
by no more than max (ip+jy, j, + ij) deletions (inser-
tions). Because x and y have the same length, j;—i;
= j,— i, and, consequently, iy +j;=jp+iy="% (ij +i+j;
+Jjy) = s, which proves Lemma 1.

Codes that can correct s deletions and inser-
tions admit anothér, metric, description. Consider
a function p(x, y) defined on pairs of binary words
and equal to the smallest number of deletions and
insertions that transform the word x into y. It is
not difficult to show that the function p(x, y) is a
metric, and that a code K can correct s deletions
and insertions if and only if p (X, y) >2s for any two
different words x and y in K.

Let Bj, be the set of all binary words of length
n. For an arbitrary word x in Bp, let |x| denote
the number of ones in x, and let [x| be the num-
ber of runs? in the word x. We will now estimate
the number Pg(x) [Qs(x)] of different words that can
be obtained from x by s deletions (s insertions).

We have the bounds .
CFMI--IOI < Py (2) < C;:au-l' (1)
‘2‘, Ci2' € Q. ()< ‘2' Clcr, (2)
=0 =0

In order to prove the upper bound in (1), note
that each word obtained by deletion from xie unique-
ly determined by the number of symbols deleted

1The definitions given below are also meaningful if the code is
taken to mean an arbitrary set of words (possibly of different
lengths) in some alphabet containing r letters (r= 2). We should
note, however, that in the case of words of different length Lem-
ma 1 is generally not true.

?By a run in a word x we mean a maximal subword consisting of
identical symbols. For example, the word x =01101 has 4 runs.
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from each run, so Pg(x) is no greater than the num-
ber of combinations of s items taken ||x|| at a time.
On the other hand, it is easy to see that if one sym-
bol is eliminated from any s pairwise nonadjacent
runs in x, all of the words thus obtained will be dif-
ferent. This leads to the lower bound in (1), if we
note that the number of such words is equal to the
number of ordered partitions of the number ||x|—s
into s+ 1 non-negative terms, where only two may,
perhaps, be equal to zero. The upper bound in (2)
follows from the fact that each word obtained from
X=0y...0p by s insertions can be obtained in the
following manner. For some i(i=0, 1,..., s),
choose i indices ng, ..., nj (1=n;<...<nj=n) and
i+1 words By, ..., Bi, Bi+4 such that the sum of
their lengths is s and such that each of the first i
words Bj is nonempty and does not end in the sym-
bol op;; then, insert each word Bj(i=1,..., i) into
the word x before the symbol oy., and insert gj+,
before the symbol on. The lower bound in (2) fol-
lows from the fact that if each of the words g3, ...,
Bi has length 1, all of the words obtained from x in
this way are different.

We should note that (1) and (2) imply that P,(x)

= [x]| and Qi(x)=n+2,

Let Lg(n) denote the power (number of words)
of a maximal code in By that can correct s dele-
tions and insertions.

Lemma 2.% For fixed s and n —

2%(s1)22n [ n2s K Le(n) < 8! 2" [ no. (3)

Proof. LetK be a maximal code in By, that
can correct s deletions and insertions, and for ar-
bitrary k(1 =k <n/2), let Lg(n)= L'+ Ly ", where
Lk' is the number of words x = K such that k< [|x||
< n—k. By the definition of K, 'Eix Pg(x) < 208,
and because of maximality, ?K Ryg(x)= 21, where
Ryg(x) is the number of words at a distance of 2s

or less [in the metric p(x, y)] from x. It follows
from (1) and (2) that 22~8 = L 'Ck_gS and

(Llr'C: ks ‘*‘ Lk Cun—l) Z C;-IC:‘Z‘-‘-
i=0
Estimate (3) follows from these last inequalities

(}_,c e s Zc,. ,)_22‘)6‘;

=n—Ak

whenwe note that L,” <
(since the number of words in Bn w1th i runs is

an
ZCi_,), andwe use the fact that V (‘,,' — o( ) when

k=[n/2—(snln n)%] and n -« (see, for example, [2]).
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Theorem 1,

Li(n) ~ 2"/ n. (4)

Proof. Invirtue of Lemma 2, it is sufficient
to prove that

Ly(n) = 2"/ (n+1). (5)

In order to prove this, we will use one of the
Varshamov-Tenengol'ts [3] constructions. Consider
the class of codes K{ ,, where each K§ ., (a=0,
1,..., m—1) is defined as the set words Og+e00p in

n

B, such that i}: oii = a (mod m). We will show that
=1

for m = n+ 1, each code Kg, m can correct one de-
letion. As the result of one deletion, assume that
a word x=0y...0p in K§ , has been transformed
into the word x'=gy'...0%-y. We can then assume
that we know |x'| and the smallest non-negative

n—1
residue of ¢ — 3 o¢’;i mod m, which we will denote

t=1

by a'. In order to restore the word x from x', it is
clearly sufficient to know: 1) which of the binary
symbols 0 or 1 has been eliminated and 2) either
the number (which we denote by ny) of zeros to the
left of the deleted symbol if this symbols is 1, or
the number (which we denote by ny) of ones to the
right of the deleted symbol, if this symbol is 0. But
it follows from the definition of Kn m and the num-
bers ny and n; that when m = n+ 1 we have either

a'= [x'[+ 1+ny (if the symbol 1 has been deleted) or

=ny (if the symbol 0 has been deleted), and n =

lx'l As a result, depending on whether a' is larger
than |x'| or not, we can determine which of the bi-
nary symbols has been deleted, and then find n, or
n;. As aresult, by Lemma 1, each code Kn m can,
for m = n+ 1, correct one deletion or 1nsert10n.
Since each of the words in B, belongs to the same
one of the m codes Kﬁ.m (@=0, 1,..., m—1), at
least one of these codes contains no fewer than
21/m words, which, for m=n+1, yields estimate (5).

2. Codes that Can Correct Deletions,

Insertions, and Reversals

We will say that a code K cancorrect s de-
letions, insertions, and reversals if
any binary word can be obtained from no more than
one word in K by s or fewer deletions, insertions,

3In what follows the notation f(n) £ g(n) will mean that
hm/(n) /g(n) < 1,, while the notation f(n)~ g(n) will mean

that limf(n) / g(n) = 1.
N0
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or reversals. It can be shown that the function
r (x, y) defined on pairs of binary words as equal
to the smallest number of deletions, insertions, and
reversals that will transform x into y is a metric,
and that a code K can correct s deletions, inser-
tions, and reversals if and only if r (x, y)> 2s for
any two different words x and y in K. Let Mg(n)
denote the power of the maximal code in By that
can correct s deletions, insertions, and reversals.
Theorem 2,

2"t n << My(n) < 27/ (n+1). (6)
Proof. The upper bound is Hamming's esti-

mate [4] for codes that can correct one reversal.

In order to prove the lower bound, it is sufficient

to show that all of the codes Kfj y, defined in the
proof of Theorem 1 are, when m = 2n, capable of
correcting one deletion, insertion, or reversal. The
fact that these codes can correct deletions or inser-
tions has already been proved. We should note,
furthermore, that if no more than one reversal is
required to change a word gy ... o, in K§ , into a
word oy'...qy!, the smallest of the non-negative

n n
residues of a— Y} ¢/i and iz oi—a mod 2n is
=] =1

larger than or equal to j, where j is the index of

the reversed symbol (or j=0 if there is no reversal).
By using the same method as we used to prove

Lemma 2, we can show that for fixed s and n — =

on

( (25)! [ ‘2,’ 2-ic,:*'c,g) ,,27" SMMmSst—. ()
=0

3. Use of Codes for Transmission

(Without Synchronizing Symbols) Over

Channels that Delete, Insert, and

Reverse

Letls n (I's, n3 Is, ni Mg, n) denote a channel
in which no more than s deletions (insertions; de-
letions and insertions; deletions, insertions, and
reversals) occur in each segment of length n. We
agree to write the sequence obtained at a channel
output from an arbitrary infinite sequence ZiZgo e
of words in a code J in the form z,'z,. .., where
zi' denotes the word obtained from the code word
zj as the result of failures in the channel. We will
call a code J admissible for a given channel if there
exists a finite automaton! that maps any sequence
z2{'zy' . .. into the sequence z,z,... . In order for a
code J to be admissible for the channels defined
above, it is necessary (but generally not sufficient)
that it be a code capable of correcting s failures of
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the appropriate types. The following assertion is
useful for construction of admissible codes: for
any binary words « and g, the codes K and Ka,g=
{oxp, x€K} can correct the same number of fail-
ures of the types under discussion. This statement
follows from the obvious equations p(axp, ayp) =
p(x,y), r(axp, ayp)=r(x, y). Inwhat follows, the
word pa will play the role of a separator between
code words, although it is generally distorted by
the channel.

We should also note the important fact that in
contrast to the case of the channel I, in the
case of the channels 'S, n ls,p» Mg, pn 0O
code J permits, when s=2(i.e., in
channels with two or more insertions)
determination of the end of the word
z! from any sequence 2z'z.... This means
that,in the cases indicated,decoding must start with
the assumption that not only can there be failures
in the channel, but there can be failures due to im-
proper location of the beginning of a word z{ (de-
coding failures). The idea at the basis of the con-
structions proposed below for the indicated chan-
nels is that as a result of treating decod-
ing failures as channel failures, no
more than s failures occur in each
code word. This is achieved by decreasing the
length of the code and appropriately selecting a
separator ga. The following statements hold: 1)
if a code K in By 554 can correct s de-
letions, then the code J=K;8 ¢8is ad-
missible for the channel ls,n 2) if a
code K in Bpyg can correct s inser-
tions, then J=KA’1s°s is admissible for
the channel Iy 45 3) if K Bp-4(s+1)2-2s can
correct s deletions, insertions, and
reversals (insertions and deletions),
J=KA'(,8+1 8THs*ls is admissible® for
the channel mg p (Ig, n)-
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