You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

636 lines
22 KiB
Python

# Adapted from the NLTK package v3.0.1:
# https://github.com/nltk/nltk/blob/3.0.1/nltk/stem/porter.py
# Copyright (c) 2002 Vivake Gupta (vivakeATomniscia.org). All rights reserved.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
# USA
#
# This software is maintained by Vivake (vivakeATomniscia.org) and is available at:
# http://www.omniscia.org/~vivake/python/PorterStemmer.py
#
# Additional modifications were made to incorporate this module into
# NLTK. All such modifications are marked with "--NLTK--". The NLTK
# version of this module is maintained by NLTK developers,
# and is available via http://nltk.org/
#
# GNU Linking Exception:
# Using this module statically or dynamically with other modules is
# making a combined work based on this module. Thus, the terms and
# conditions of the GNU General Public License cover the whole combination.
# As a special exception, the copyright holders of this module give
# you permission to combine this module with independent modules to
# produce an executable program, regardless of the license terms of these
# independent modules, and to copy and distribute the resulting
# program under terms of your choice, provided that you also meet,
# for each linked independent module, the terms and conditions of
# the license of that module. An independent module is a module which
# is not derived from or based on this module. If you modify this module,
# you may extend this exception to your version of the module, but you
# are not obliged to do so. If you do not wish to do so, delete this
# exception statement from your version.
"""
Porter Stemmer
This is the Porter stemming algorithm, ported to Python from the
version coded up in ANSI C by the author. It follows the algorithm
presented in
Porter, M. "An algorithm for suffix stripping." Program 14.3 (1980): 130-137.
only differing from it at the points marked --DEPARTURE-- and --NEW--
below.
For a more faithful version of the Porter algorithm, see
http://www.tartarus.org/~martin/PorterStemmer/
Later additions:
June 2000
The 'l' of the 'logi' -> 'log' rule is put with the stem, so that
short stems like 'geo' 'theo' etc work like 'archaeo' 'philo' etc.
This follows a suggestion of Barry Wilkins, research student at
Birmingham.
February 2000
the cvc test for not dropping final -e now looks after vc at the
beginning of a word, so are, eve, ice, ore, use keep final -e. In this
test c is any consonant, including w, x and y. This extension was
suggested by Chris Emerson.
-fully -> -ful treated like -fulness -> -ful, and
-tionally -> -tion treated like -tional -> -tion
both in Step 2. These were suggested by Hiranmay Ghosh, of New Delhi.
Invariants proceed, succeed, exceed. Also suggested by Hiranmay Ghosh.
Additional modifications were made to incorperate this module into
nltk. All such modifications are marked with \"--NLTK--\". The nltk
version of this module is maintained by the NLTK developers, and is
available from <http://nltk.sourceforge.net>
"""
## --NLTK--
## Declare this module's documentation format.
class PorterStemmer():
## --NLTK--
## Add a module docstring
"""
A word stemmer based on the Porter stemming algorithm.
Porter, M. \"An algorithm for suffix stripping.\"
Program 14.3 (1980): 130-137.
A few minor modifications have been made to Porter's basic
algorithm. See the source code of this module for more
information.
The Porter Stemmer requires that all tokens have string types.
"""
# The main part of the stemming algorithm starts here.
# Note that only lower case sequences are stemmed. Forcing to lower case
# should be done before stem(...) is called.
def __init__(self):
## --NEW--
## This is a table of irregular forms. It is quite short, but still
## reflects the errors actually drawn to Martin Porter's attention over
## a 20 year period!
##
## Extend it as necessary.
##
## The form of the table is:
## {
## "p1" : ["s11","s12","s13", ... ],
## "p2" : ["s21","s22","s23", ... ],
## ...
## "pn" : ["sn1","sn2","sn3", ... ]
## }
##
## String sij is mapped to paradigm form pi, and the main stemming
## process is then bypassed.
irregular_forms = {
"sky" : ["sky", "skies"],
"die" : ["dying"],
"lie" : ["lying"],
"tie" : ["tying"],
"news" : ["news"],
"inning" : ["innings", "inning"],
"outing" : ["outings", "outing"],
"canning" : ["cannings", "canning"],
"howe" : ["howe"],
# --NEW--
"proceed" : ["proceed"],
"exceed" : ["exceed"],
"succeed" : ["succeed"], # Hiranmay Ghosh
}
self.pool = {}
for key in irregular_forms:
for val in irregular_forms[key]:
self.pool[val] = key
self.vowels = frozenset(['a', 'e', 'i', 'o', 'u'])
def _cons(self, word, i):
"""cons(i) is TRUE <=> b[i] is a consonant."""
if word[i] in self.vowels:
return False
if word[i] == 'y':
if i == 0:
return True
else:
return (not self._cons(word, i - 1))
return True
def _m(self, word, j):
"""m() measures the number of consonant sequences between k0 and j.
if c is a consonant sequence and v a vowel sequence, and <..>
indicates arbitrary presence,
<c><v> gives 0
<c>vc<v> gives 1
<c>vcvc<v> gives 2
<c>vcvcvc<v> gives 3
....
"""
n = 0
i = 0
while True:
if i > j:
return n
if not self._cons(word, i):
break
i = i + 1
i = i + 1
while True:
while True:
if i > j:
return n
if self._cons(word, i):
break
i = i + 1
i = i + 1
n = n + 1
while True:
if i > j:
return n
if not self._cons(word, i):
break
i = i + 1
i = i + 1
def _vowelinstem(self, stem):
"""vowelinstem(stem) is TRUE <=> stem contains a vowel"""
for i in range(len(stem)):
if not self._cons(stem, i):
return True
return False
def _doublec(self, word):
"""doublec(word) is TRUE <=> word ends with a double consonant"""
if len(word) < 2:
return False
if (word[-1] != word[-2]):
return False
return self._cons(word, len(word)-1)
def _cvc(self, word, i):
"""cvc(i) is TRUE <=>
a) ( --NEW--) i == 1, and word[0] word[1] is vowel consonant, or
b) word[i - 2], word[i - 1], word[i] has the form consonant -
vowel - consonant and also if the second c is not w, x or y. this
is used when trying to restore an e at the end of a short word.
e.g.
cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.
"""
if i == 0: return False # i == 0 never happens perhaps
if i == 1: return (not self._cons(word, 0) and self._cons(word, 1))
if not self._cons(word, i) or self._cons(word, i-1) or not self._cons(word, i-2): return False
ch = word[i]
if ch == 'w' or ch == 'x' or ch == 'y':
return False
return True
def _step1ab(self, word):
"""step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
sties -> sti
tie -> tie (--NEW--: see below)
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet
"""
if word[-1] == 's':
if word.endswith("sses"):
word = word[:-2]
elif word.endswith("ies"):
if len(word) == 4:
word = word[:-1]
# this line extends the original algorithm, so that
# 'flies'->'fli' but 'dies'->'die' etc
else:
word = word[:-2]
elif word[-2] != 's':
word = word[:-1]
ed_or_ing_trimmed = False
if word.endswith("ied"):
if len(word) == 4:
word = word[:-1]
else:
word = word[:-2]
# this line extends the original algorithm, so that
# 'spied'->'spi' but 'died'->'die' etc
elif word.endswith("eed"):
if self._m(word, len(word)-4) > 0:
word = word[:-1]
elif word.endswith("ed") and self._vowelinstem(word[:-2]):
word = word[:-2]
ed_or_ing_trimmed = True
elif word.endswith("ing") and self._vowelinstem(word[:-3]):
word = word[:-3]
ed_or_ing_trimmed = True
if ed_or_ing_trimmed:
if word.endswith("at") or word.endswith("bl") or word.endswith("iz"):
word += 'e'
elif self._doublec(word):
if word[-1] not in ['l', 's', 'z']:
word = word[:-1]
elif (self._m(word, len(word)-1) == 1 and self._cvc(word, len(word)-1)):
word += 'e'
return word
def _step1c(self, word):
"""step1c() turns terminal y to i when there is another vowel in the stem.
--NEW--: This has been modified from the original Porter algorithm so that y->i
is only done when y is preceded by a consonant, but not if the stem
is only a single consonant, i.e.
(*c and not c) Y -> I
So 'happy' -> 'happi', but
'enjoy' -> 'enjoy' etc
This is a much better rule. Formerly 'enjoy'->'enjoi' and 'enjoyment'->
'enjoy'. Step 1c is perhaps done too soon; but with this modification that
no longer really matters.
Also, the removal of the vowelinstem(z) condition means that 'spy', 'fly',
'try' ... stem to 'spi', 'fli', 'tri' and conflate with 'spied', 'tried',
'flies' ...
"""
if word[-1] == 'y' and len(word) > 2 and self._cons(word, len(word) - 2):
return word[:-1] + 'i'
else:
return word
def _step2(self, word):
"""step2() maps double suffices to single ones.
so -ization ( = -ize plus -ation) maps to -ize etc. note that the
string before the suffix must give m() > 0.
"""
if len(word) <= 1: # Only possible at this stage given unusual inputs to stem_word like 'oed'
return word
ch = word[-2]
if ch == 'a':
if word.endswith("ational"):
return word[:-7] + "ate" if self._m(word, len(word)-8) > 0 else word
elif word.endswith("tional"):
return word[:-2] if self._m(word, len(word)-7) > 0 else word
else:
return word
elif ch == 'c':
if word.endswith("enci"):
return word[:-4] + "ence" if self._m(word, len(word)-5) > 0 else word
elif word.endswith("anci"):
return word[:-4] + "ance" if self._m(word, len(word)-5) > 0 else word
else:
return word
elif ch == 'e':
if word.endswith("izer"):
return word[:-1] if self._m(word, len(word)-5) > 0 else word
else:
return word
elif ch == 'l':
if word.endswith("bli"):
return word[:-3] + "ble" if self._m(word, len(word)-4) > 0 else word # --DEPARTURE--
# To match the published algorithm, replace "bli" with "abli" and "ble" with "able"
elif word.endswith("alli"):
# --NEW--
if self._m(word, len(word)-5) > 0:
word = word[:-2]
return self._step2(word)
else:
return word
elif word.endswith("fulli"):
return word[:-2] if self._m(word, len(word)-6) else word # --NEW--
elif word.endswith("entli"):
return word[:-2] if self._m(word, len(word)-6) else word
elif word.endswith("eli"):
return word[:-2] if self._m(word, len(word)-4) else word
elif word.endswith("ousli"):
return word[:-2] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'o':
if word.endswith("ization"):
return word[:-7] + "ize" if self._m(word, len(word)-8) else word
elif word.endswith("ation"):
return word[:-5] + "ate" if self._m(word, len(word)-6) else word
elif word.endswith("ator"):
return word[:-4] + "ate" if self._m(word, len(word)-5) else word
else:
return word
elif ch == 's':
if word.endswith("alism"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("ness"):
if word.endswith("iveness"):
return word[:-4] if self._m(word, len(word)-8) else word
elif word.endswith("fulness"):
return word[:-4] if self._m(word, len(word)-8) else word
elif word.endswith("ousness"):
return word[:-4] if self._m(word, len(word)-8) else word
else:
return word
else:
return word
elif ch == 't':
if word.endswith("aliti"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("iviti"):
return word[:-5] + "ive" if self._m(word, len(word)-6) else word
elif word.endswith("biliti"):
return word[:-6] + "ble" if self._m(word, len(word)-7) else word
else:
return word
elif ch == 'g': # --DEPARTURE--
if word.endswith("logi"):
return word[:-1] if self._m(word, len(word) - 4) else word # --NEW-- (Barry Wilkins)
# To match the published algorithm, pass len(word)-5 to _m instead of len(word)-4
else:
return word
else:
return word
def _step3(self, word):
"""step3() deals with -ic-, -full, -ness etc. similar strategy to step2."""
ch = word[-1]
if ch == 'e':
if word.endswith("icate"):
return word[:-3] if self._m(word, len(word)-6) else word
elif word.endswith("ative"):
return word[:-5] if self._m(word, len(word)-6) else word
elif word.endswith("alize"):
return word[:-3] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'i':
if word.endswith("iciti"):
return word[:-3] if self._m(word, len(word)-6) else word
else:
return word
elif ch == 'l':
if word.endswith("ical"):
return word[:-2] if self._m(word, len(word)-5) else word
elif word.endswith("ful"):
return word[:-3] if self._m(word, len(word)-4) else word
else:
return word
elif ch == 's':
if word.endswith("ness"):
return word[:-4] if self._m(word, len(word)-5) else word
else:
return word
else:
return word
def _step4(self, word):
"""step4() takes off -ant, -ence etc., in context <c>vcvc<v>."""
if len(word) <= 1: # Only possible at this stage given unusual inputs to stem_word like 'oed'
return word
ch = word[-2]
if ch == 'a':
if word.endswith("al"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'c':
if word.endswith("ance"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ence"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
else:
return word
elif ch == 'e':
if word.endswith("er"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'i':
if word.endswith("ic"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 'l':
if word.endswith("able"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ible"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
else:
return word
elif ch == 'n':
if word.endswith("ant"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("ement"):
return word[:-5] if self._m(word, len(word)-6) > 1 else word
elif word.endswith("ment"):
return word[:-4] if self._m(word, len(word)-5) > 1 else word
elif word.endswith("ent"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'o':
if word.endswith("sion") or word.endswith("tion"): # slightly different logic to all the other cases
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("ou"):
return word[:-2] if self._m(word, len(word)-3) > 1 else word
else:
return word
elif ch == 's':
if word.endswith("ism"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 't':
if word.endswith("ate"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
elif word.endswith("iti"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'u':
if word.endswith("ous"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'v':
if word.endswith("ive"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
elif ch == 'z':
if word.endswith("ize"):
return word[:-3] if self._m(word, len(word)-4) > 1 else word
else:
return word
else:
return word
def _step5(self, word):
"""step5() removes a final -e if m() > 1, and changes -ll to -l if
m() > 1.
"""
if word[-1] == 'e':
a = self._m(word, len(word)-1)
if a > 1 or (a == 1 and not self._cvc(word, len(word)-2)):
word = word[:-1]
if word.endswith('ll') and self._m(word, len(word)-1) > 1:
word = word[:-1]
return word
def stem_word(self, p, i=0, j=None):
"""
Returns the stem of p, or, if i and j are given, the stem of p[i:j+1].
"""
## --NLTK--
if j is None and i == 0:
word = p
else:
if j is None:
j = len(p) - 1
word = p[i:j+1]
if word in self.pool:
return self.pool[word]
if len(word) <= 2:
return word # --DEPARTURE--
# With this line, strings of length 1 or 2 don't go through the
# stemming process, although no mention is made of this in the
# published algorithm. Remove the line to match the published
# algorithm.
word = self._step1ab(word)
word = self._step1c(word)
word = self._step2(word)
word = self._step3(word)
word = self._step4(word)
word = self._step5(word)
return word
def _adjust_case(self, word, stem):
lower = word.lower()
ret = ""
for x in range(len(stem)):
if lower[x] == stem[x]:
ret += word[x]
else:
ret += stem[x]
return ret
## --NLTK--
## Don't use this procedure; we want to work with individual
## tokens, instead. (commented out the following procedure)
#def stem(self, text):
# parts = re.split("(\W+)", text)
# numWords = (len(parts) + 1)/2
#
# ret = ""
# for i in xrange(numWords):
# word = parts[2 * i]
# separator = ""
# if ((2 * i) + 1) < len(parts):
# separator = parts[(2 * i) + 1]
#
# stem = self.stem_word(string.lower(word), 0, len(word) - 1)
# ret = ret + self.adjust_case(word, stem)
# ret = ret + separator
# return ret
## --NLTK--
## Define a stem() method that implements the StemmerI interface.
def stem(self, word):
stem = self.stem_word(word.lower(), 0, len(word) - 1)
return self._adjust_case(word, stem)
## --NLTK--
## Add a string representation function
def __repr__(self):
return '<PorterStemmer>'