You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
7.3 KiB
Python
228 lines
7.3 KiB
Python
2 years ago
|
from itertools import combinations as _combinations
|
||
|
from queue import Queue
|
||
|
|
||
|
from .pagerank_weighted import pagerank_weighted_scipy as _pagerank
|
||
|
from .preprocessing.textcleaner import clean_text_by_word as _clean_text_by_word
|
||
|
from .preprocessing.textcleaner import tokenize_by_word as _tokenize_by_word
|
||
|
from .commons import build_graph as _build_graph
|
||
|
from .commons import remove_unreachable_nodes as _remove_unreachable_nodes
|
||
|
|
||
|
WINDOW_SIZE = 2
|
||
|
|
||
|
"""Check tags in http://www.clips.ua.ac.be/pages/mbsp-tags and use only first two letters
|
||
|
Example: filter for nouns and adjectives:
|
||
|
INCLUDING_FILTER = ['NN', 'JJ']"""
|
||
|
INCLUDING_FILTER = ['NN', 'JJ']
|
||
|
EXCLUDING_FILTER = []
|
||
|
|
||
|
|
||
|
def _get_pos_filters():
|
||
|
return frozenset(INCLUDING_FILTER), frozenset(EXCLUDING_FILTER)
|
||
|
|
||
|
|
||
|
def _get_words_for_graph(tokens):
|
||
|
include_filters, exclude_filters = _get_pos_filters()
|
||
|
if include_filters and exclude_filters:
|
||
|
raise ValueError("Can't use both include and exclude filters, should use only one")
|
||
|
|
||
|
result = []
|
||
|
for word, unit in tokens.items():
|
||
|
if exclude_filters and unit.tag in exclude_filters:
|
||
|
continue
|
||
|
if (include_filters and unit.tag in include_filters) or not include_filters or not unit.tag:
|
||
|
result.append(unit.token)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _get_first_window(split_text):
|
||
|
return split_text[:WINDOW_SIZE]
|
||
|
|
||
|
|
||
|
def _set_graph_edge(graph, tokens, word_a, word_b):
|
||
|
if word_a in tokens and word_b in tokens:
|
||
|
lemma_a = tokens[word_a].token
|
||
|
lemma_b = tokens[word_b].token
|
||
|
edge = (lemma_a, lemma_b)
|
||
|
|
||
|
if graph.has_node(lemma_a) and graph.has_node(lemma_b) and not graph.has_edge(edge):
|
||
|
graph.add_edge(edge)
|
||
|
|
||
|
|
||
|
def _process_first_window(graph, tokens, split_text):
|
||
|
first_window = _get_first_window(split_text)
|
||
|
for word_a, word_b in _combinations(first_window, 2):
|
||
|
_set_graph_edge(graph, tokens, word_a, word_b)
|
||
|
|
||
|
|
||
|
def _init_queue(split_text):
|
||
|
queue = Queue()
|
||
|
first_window = _get_first_window(split_text)
|
||
|
for word in first_window[1:]:
|
||
|
queue.put(word)
|
||
|
return queue
|
||
|
|
||
|
|
||
|
def _process_word(graph, tokens, queue, word):
|
||
|
for word_to_compare in _queue_iterator(queue):
|
||
|
_set_graph_edge(graph, tokens, word, word_to_compare)
|
||
|
|
||
|
|
||
|
def _update_queue(queue, word):
|
||
|
queue.get()
|
||
|
queue.put(word)
|
||
|
assert queue.qsize() == (WINDOW_SIZE - 1)
|
||
|
|
||
|
|
||
|
def _process_text(graph, tokens, split_text):
|
||
|
queue = _init_queue(split_text)
|
||
|
for i in range(WINDOW_SIZE, len(split_text)):
|
||
|
word = split_text[i]
|
||
|
_process_word(graph, tokens, queue, word)
|
||
|
_update_queue(queue, word)
|
||
|
|
||
|
|
||
|
def _queue_iterator(queue):
|
||
|
iterations = queue.qsize()
|
||
|
for i in range(iterations):
|
||
|
var = queue.get()
|
||
|
yield var
|
||
|
queue.put(var)
|
||
|
|
||
|
|
||
|
def _set_graph_edges(graph, tokens, split_text):
|
||
|
_process_first_window(graph, tokens, split_text)
|
||
|
_process_text(graph, tokens, split_text)
|
||
|
|
||
|
|
||
|
def _extract_tokens(lemmas, scores, ratio, words):
|
||
|
lemmas.sort(key=lambda s: scores[s], reverse=True)
|
||
|
|
||
|
# If no "words" option is selected, the number of sentences is
|
||
|
# reduced by the provided ratio, else, the ratio is ignored.
|
||
|
length = len(lemmas) * ratio if words is None else words
|
||
|
return [(scores[lemmas[i]], lemmas[i],) for i in range(int(length))]
|
||
|
|
||
|
|
||
|
def _lemmas_to_words(tokens):
|
||
|
lemma_to_word = {}
|
||
|
for word, unit in tokens.items():
|
||
|
lemma = unit.token
|
||
|
if lemma in lemma_to_word:
|
||
|
lemma_to_word[lemma].append(word)
|
||
|
else:
|
||
|
lemma_to_word[lemma] = [word]
|
||
|
return lemma_to_word
|
||
|
|
||
|
|
||
|
def _get_keywords_with_score(extracted_lemmas, lemma_to_word):
|
||
|
"""
|
||
|
:param extracted_lemmas:list of tuples
|
||
|
:param lemma_to_word: dict of {lemma:list of words}
|
||
|
:return: dict of {keyword:score}
|
||
|
"""
|
||
|
keywords = {}
|
||
|
for score, lemma in extracted_lemmas:
|
||
|
keyword_list = lemma_to_word[lemma]
|
||
|
for keyword in keyword_list:
|
||
|
keywords[keyword] = score
|
||
|
return keywords
|
||
|
|
||
|
|
||
|
def _strip_word(word):
|
||
|
stripped_word_list = list(_tokenize_by_word(word))
|
||
|
return stripped_word_list[0] if stripped_word_list else ""
|
||
|
|
||
|
|
||
|
def _get_combined_keywords(_keywords, split_text):
|
||
|
"""
|
||
|
:param keywords:dict of keywords:scores
|
||
|
:param split_text: list of strings
|
||
|
:return: combined_keywords:list
|
||
|
"""
|
||
|
result = []
|
||
|
_keywords = _keywords.copy()
|
||
|
len_text = len(split_text)
|
||
|
for i in range(len_text):
|
||
|
word = _strip_word(split_text[i])
|
||
|
if word in _keywords:
|
||
|
combined_word = [word]
|
||
|
if i + 1 == len_text:
|
||
|
result.append(word) # appends last word if keyword and doesn't iterate
|
||
|
for j in range(i + 1, len_text):
|
||
|
other_word = _strip_word(split_text[j])
|
||
|
if other_word in _keywords and other_word == split_text[j] \
|
||
|
and other_word not in combined_word:
|
||
|
combined_word.append(other_word)
|
||
|
else:
|
||
|
for keyword in combined_word:
|
||
|
_keywords.pop(keyword)
|
||
|
result.append(" ".join(combined_word))
|
||
|
break
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _get_average_score(concept, _keywords):
|
||
|
word_list = concept.split()
|
||
|
word_counter = 0
|
||
|
total = 0
|
||
|
for word in word_list:
|
||
|
total += _keywords[word]
|
||
|
word_counter += 1
|
||
|
return total / word_counter
|
||
|
|
||
|
|
||
|
def _format_results(_keywords, combined_keywords, split, scores):
|
||
|
"""
|
||
|
:param keywords:dict of keywords:scores
|
||
|
:param combined_keywords:list of word/s
|
||
|
"""
|
||
|
combined_keywords.sort(key=lambda w: _get_average_score(w, _keywords), reverse=True)
|
||
|
if scores:
|
||
|
return [(word, _get_average_score(word, _keywords)) for word in combined_keywords]
|
||
|
if split:
|
||
|
return combined_keywords
|
||
|
return "\n".join(combined_keywords)
|
||
|
|
||
|
|
||
|
def keywords(text, ratio=0.2, words=None, language="english", split=False, scores=False, deaccent=False, additional_stopwords=None):
|
||
|
if not isinstance(text, str):
|
||
|
raise ValueError("Text parameter must be a Unicode object (str)!")
|
||
|
|
||
|
# Gets a dict of word -> lemma
|
||
|
tokens = _clean_text_by_word(text, language, deacc=deaccent, additional_stopwords=additional_stopwords)
|
||
|
split_text = list(_tokenize_by_word(text))
|
||
|
|
||
|
# Creates the graph and adds the edges
|
||
|
graph = _build_graph(_get_words_for_graph(tokens))
|
||
|
_set_graph_edges(graph, tokens, split_text)
|
||
|
del split_text # It's no longer used
|
||
|
|
||
|
_remove_unreachable_nodes(graph)
|
||
|
|
||
|
# PageRank cannot be run in an empty graph.
|
||
|
if len(graph.nodes()) == 0:
|
||
|
return [] if split else ""
|
||
|
|
||
|
# Ranks the tokens using the PageRank algorithm. Returns dict of lemma -> score
|
||
|
pagerank_scores = _pagerank(graph)
|
||
|
|
||
|
extracted_lemmas = _extract_tokens(graph.nodes(), pagerank_scores, ratio, words)
|
||
|
|
||
|
lemmas_to_word = _lemmas_to_words(tokens)
|
||
|
keywords = _get_keywords_with_score(extracted_lemmas, lemmas_to_word)
|
||
|
|
||
|
# text.split() to keep numbers and punctuation marks, so separeted concepts are not combined
|
||
|
combined_keywords = _get_combined_keywords(keywords, text.split())
|
||
|
|
||
|
return _format_results(keywords, combined_keywords, split, scores)
|
||
|
|
||
|
|
||
|
def get_graph(text, language="english", deaccent=False):
|
||
|
tokens = _clean_text_by_word(text, language, deacc=deaccent)
|
||
|
split_text = list(_tokenize_by_word(text, deacc=deaccent))
|
||
|
|
||
|
graph = _build_graph(_get_words_for_graph(tokens))
|
||
|
_set_graph_edges(graph, tokens, split_text)
|
||
|
|
||
|
return graph
|