You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

87 lines
2.7 KiB
Python

from scipy.sparse import csr_matrix
from scipy.linalg import eig
from numpy import empty as empty_matrix
CONVERGENCE_THRESHOLD = 0.0001
def pagerank_weighted(graph, initial_value=None, damping=0.85):
"""Calculates PageRank for an undirected graph"""
if initial_value == None: initial_value = 1.0 / len(graph.nodes())
scores = dict.fromkeys(graph.nodes(), initial_value)
iteration_quantity = 0
for iteration_number in range(100):
iteration_quantity += 1
convergence_achieved = 0
for i in graph.nodes():
rank = 1 - damping
for j in graph.neighbors(i):
neighbors_sum = sum(graph.edge_weight((j, k)) for k in graph.neighbors(j))
rank += damping * scores[j] * graph.edge_weight((j, i)) / neighbors_sum
if abs(scores[i] - rank) <= CONVERGENCE_THRESHOLD:
convergence_achieved += 1
scores[i] = rank
if convergence_achieved == len(graph.nodes()):
break
return scores
def pagerank_weighted_scipy(graph, damping=0.85):
adjacency_matrix = build_adjacency_matrix(graph)
probability_matrix = build_probability_matrix(graph)
# Suppress deprecation warnings from numpy.
# See https://github.com/summanlp/textrank/issues/57
import warnings
with warnings.catch_warnings():
from numpy import VisibleDeprecationWarning
warnings.filterwarnings("ignore", category=VisibleDeprecationWarning)
warnings.filterwarnings("ignore", category=PendingDeprecationWarning)
pagerank_matrix = damping * adjacency_matrix.todense() + (1 - damping) * probability_matrix
vals, vecs = eig(pagerank_matrix, left=True, right=False)
return process_results(graph, vecs)
def build_adjacency_matrix(graph):
row = []
col = []
data = []
nodes = graph.nodes()
length = len(nodes)
for i in range(length):
current_node = nodes[i]
neighbors_sum = sum(graph.edge_weight((current_node, neighbor)) for neighbor in graph.neighbors(current_node))
for j in range(length):
edge_weight = float(graph.edge_weight((current_node, nodes[j])))
if i != j and edge_weight != 0:
row.append(i)
col.append(j)
data.append(edge_weight / neighbors_sum)
return csr_matrix((data,(row,col)), shape=(length,length))
def build_probability_matrix(graph):
dimension = len(graph.nodes())
matrix = empty_matrix((dimension,dimension))
probability = 1 / float(dimension)
matrix.fill(probability)
return matrix
def process_results(graph, vecs):
scores = {}
for i, node in enumerate(graph.nodes()):
scores[node] = abs(vecs[i][0])
return scores