added image cropping tool
							parent
							
								
									d94611313c
								
							
						
					
					
						commit
						36faee0258
					
				| @ -0,0 +1,144 @@ | ||||
| # a digital cake knife in the spirit of Hannah Höch | ||||
| # cuts out composable contours from the herbarium scans | ||||
| import glob | ||||
| import os.path | ||||
| import sqlite3 | ||||
| 
 | ||||
| import cv2 | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
| 
 | ||||
| BLUR = 3 | ||||
| CANNY_THRESH_1 = 200 | ||||
| CANNY_THRESH_2 = 250 | ||||
| MASK_DILATE_ITER = 40 | ||||
| MASK_ERODE_ITER = 40 | ||||
| MASK_COLOR = (0.0,0.0,1.0) # In BGR format | ||||
| 
 | ||||
| src_imgs = glob.glob("specimen_img_raw/*") | ||||
| 
 | ||||
| db = sqlite3.connect("ratios.db") | ||||
| dbc = db.cursor() | ||||
| 
 | ||||
| for src in src_imgs: | ||||
|     img_color = cv2.imread(src) | ||||
|     scalar = float(1000.0 / img_color.shape[1]) | ||||
|     new_height = int(scalar * img_color.shape[0]) | ||||
|     img_color = cv2.resize(img_color, (1000, new_height)) | ||||
|     img_gray = cv2.imread(src, flags=cv2.IMREAD_GRAYSCALE) | ||||
|     img_gray = cv2.resize(img_gray, (1000, new_height)) | ||||
| 
 | ||||
|     # add some white around the edges so we have some space to rotate | ||||
|     img_color = cv2.copyMakeBorder(img_color,10,10,10,10,cv2.BORDER_CONSTANT, value=[255, 255, 255]) | ||||
|     img_gray = cv2.copyMakeBorder(img_gray,10,10,10,10,cv2.BORDER_CONSTANT, value=[255]) | ||||
|     blurred = cv2.GaussianBlur(img_gray, (9, 9), 0) | ||||
| 
 | ||||
|     aperture = 5  # default is 3 but 5 or 7 are more sensitive | ||||
| 
 | ||||
|     # most of this is ganked directly from this https://stackoverflow.com/questions/29313667/how-do-i-remove-the-background-from-this-kind-of-image | ||||
| 
 | ||||
|     #-- Edge detection ------------------------------------------------------------------- | ||||
|     edges = cv2.Canny(blurred, CANNY_THRESH_1, CANNY_THRESH_2, apertureSize=aperture) | ||||
|     edges = cv2.dilate(edges, None) | ||||
|     edges = cv2.erode(edges, None) | ||||
| 
 | ||||
|     #-- Find contours in edges, sort by area --------------------------------------------- | ||||
|     contour_info = [] | ||||
|     contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) | ||||
|     for c in contours: | ||||
|         contour_info.append(( | ||||
|             c, | ||||
|             cv2.isContourConvex(c), | ||||
|             cv2.contourArea(c), | ||||
|         )) | ||||
|     contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True) | ||||
| 
 | ||||
|     # filter out the accidental box contours - should be less than 85% of pixels | ||||
|     img_area = img_color.shape[0] * img_color.shape[1] | ||||
|     for cont in contour_info: | ||||
|         max_contour = cont | ||||
|         pixel_ratio = max_contour[2] / img_area | ||||
|         if pixel_ratio < 0.85: | ||||
|             test_img = img_color.copy() | ||||
|             c_rect = cv2.minAreaRect(max_contour[0]) | ||||
|             box = cv2.boxPoints(c_rect) | ||||
|             box = np.int0(box) | ||||
|             cv2.drawContours(test_img, [max_contour[0]], -1, (255, 0, 0, 20), 3) | ||||
|             cv2.drawContours(test_img, [box], -1, (0, 255, 0), 3) | ||||
|             cv2.imwrite("test.png", test_img) | ||||
|             test_viewer = Image.open("test.png") | ||||
|             test_viewer.show() | ||||
|             if input("contour ok (y/n)?") == "y": | ||||
|                 test_viewer.close() | ||||
|                 break | ||||
|             test_viewer.close() | ||||
| 
 | ||||
|     #-- Create empty mask, draw filled polygon on it corresponding to largest contour ---- | ||||
|     # Mask is black, polygon is white | ||||
|     mask = np.zeros(edges.shape) | ||||
|     cv2.fillConvexPoly(mask, max_contour[0], (255)) | ||||
| 
 | ||||
|     #-- Smooth mask, then blur it -------------------------------------------------------- | ||||
|     mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER) | ||||
|     mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER) | ||||
|     mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0) | ||||
|     mask_stack = np.dstack([mask]*3)    # Create 3-channel alpha mask | ||||
| 
 | ||||
|     #-- Blend masked img into MASK_COLOR background -------------------------------------- | ||||
|     mask_stack = mask_stack.astype('float32') / 255.0          # Use float matrices, | ||||
|     img_color = img_color.astype('float32') / 255.0                 #  for easy blending | ||||
| 
 | ||||
|     # split image into channels | ||||
|     try: | ||||
|         c_red, c_green, c_blue = cv2.split(img_color) | ||||
|     except ValueError: | ||||
|         print("seems to be greyscale already...") | ||||
|         img_color = cv2.cvtColor(img_color, cv2.COLOR_GRAY2BGR) | ||||
|         c_red, c_green, c_blue = cv2.split(img_color) | ||||
| 
 | ||||
|     # merge with mask got on one of a previous steps | ||||
|     img_a = cv2.merge((c_red, c_green, c_blue, mask.astype('float32') / 255.0)) | ||||
| 
 | ||||
|     # find bounding minimum bounding rect as that's what we want to rotate & save | ||||
|     rect = cv2.minAreaRect(max_contour[0]) | ||||
|     box = cv2.boxPoints(rect) | ||||
|     box = np.int0(box) | ||||
| 
 | ||||
|     width = int(rect[1][0]) | ||||
|     height = int(rect[1][1]) | ||||
| 
 | ||||
|     # set up a new destination exactly the size of our ROI | ||||
|     src_pts = box.astype("float32") | ||||
|     dst_pts = np.array([[0, height-1], | ||||
|                         [0, 0], | ||||
|                         [width-1, 0], | ||||
|                         [width-1, height-1]], dtype="float32") | ||||
| 
 | ||||
|     # now rotate using warp which is more efficient and preserves pixels | ||||
|     M = cv2.getPerspectiveTransform(src_pts, dst_pts) | ||||
|     warped = cv2.warpPerspective(img_a, M, (width, height)) | ||||
| 
 | ||||
|     # save to disk | ||||
|     basename, ext = os.path.splitext(os.path.basename(src)) | ||||
|     out_path = os.path.join("specimen_cutout", basename + ".png") | ||||
|     print("saving cropped cutout", out_path) | ||||
|     cv2.imwrite(out_path, warped*255) | ||||
| 
 | ||||
|     # add to database | ||||
|     if height > width: | ||||
|         ratio = float(height) / width | ||||
|     else: | ||||
|         ratio = float(width) / height | ||||
| 
 | ||||
|     try: | ||||
|         dbc.execute("INSERT INTO images VALUES (?, ?, ?, ?)", (ratio, width, height, out_path)) | ||||
|     except sqlite3.IntegrityError as err: | ||||
|         print(err) | ||||
|         print("Trying db update instead.") | ||||
|         dbc.execute("UPDATE images SET (ratio, width, height) = (?, ?, ?) WHERE img_path = ?",  | ||||
|                     (ratio, width, height, out_path)) | ||||
| 
 | ||||
| 
 | ||||
| db.commit() | ||||
| db.close() | ||||
| 
 | ||||
					Loading…
					
					
				
		Reference in New Issue